Sains Malaysiana 49(3)(2020):
661-669
http://dx.doi.org/10.17576/jsm-2020-4903-21
Influence Mechanism of Epoxy Resin and Curing Agent
on High-Temperature Performance of Asphalt
(Mekanisme Pengaruh Resin Epoksi
dan Agen Pengawetan pada Prestasi Suhu Tinggi Asfalt)
MINGXING GAO1*, YANHUA XUE1, PENG GUAN2 &
FEILONG YUAN1
1College of Energy and Transportation Engineering,
Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
2President of Hongrui Road and Bridge Engineering Science
and Technology 91ÊÓÆµ Institute, Hinggan League, Inner Mongolia, 137400, China
Diserahkan: 19 September 2019/Diterima: 4 Disember 2019
Abstract
To deeply show the internal reasons for the effects of epoxy
resin and curing agent on the high-temperature performance of asphalt,
nine kinds of asphalt with different content of epoxy resin and
curing agent were prepared. On the premise
of ensuring that the softening point, penetration and ductility
of epoxy asphalt no attenuation, the dynamic shear rheology test
and Saybolt viscosity test were used to examine the rutting factor
(G*/sin δ), complex shear modulus (G*), phase angle (δ),
and viscosity of asphalt with different epoxy resin and curing agent
contents. With the help of fluorescence microscopy, microscopic
morphology was analyzed, and the micro-image was further analyzed
quantitatively by using 3Dsurface and particle statistics. The results show
that adding epoxy resin and curing agent into asphalt can significantly
improve the rutting factor and complex shear modulus of asphalt
and reduce the phase angle and the viscosity growth rate of asphalt
changed from fast to slow. Fluorescence and 3Dsurface imaging results
indicate when the epoxy resin and the curing agent
are uniformly distributed and forms microflocculent structures,
the epoxy resin can fully swell in asphalt, and the fluorescence
intensity is uniform. The statistical analysis of particles shows
that the improvement in high-temperature performance of asphalt
by epoxy resin and curing agent results from the distribution of
particle area above 26.7346 μm2. The high-temperature
performance of epoxy asphalt is optimal when the content of epoxy
resin and curing agent is 6 %.
Keywords: 3Dsurface; fluorescence;
micromorphology;
particles of statistical
Abstrak
Dalam usaha secara mendalam
untuk menunjukkan sebab dalaman kesan resin epoksi
dan agen pengawetan
pada prestasi suhu tinggi Asfalt, sembilan
jenis daripada asfalt dengan kandungan resin epoksi dan agen pengawetan
telah disediakan. Dalam usaha untuk memastikan
takat pelembutan,
penembusan dan
kemuluran epoksi
asfalt tiada pengecilan, ujian reologi ricih
dinamik dan ujian kelikatan Saybolt digunakan untuk memeriksa faktor
rut
(G*/sinδ), modulus ricih kompleks (G*), sudut fasa (δ) dan kelikatan asfalt resin epoksi berbeza serta kandungan agen pengawetan. Dengan bantuan
mikroskopi pendarfluor, morfologi mikroskopi telah dianalisis dan imej mikro dianalisis lebih lanjut
secara kuantitif
menggunakan
statistik 3Dsurface dan statistik zarah. Keputusan menunjukkan
bahawa penambahan resin epoksi dan
agen pengawetan
ke dalam asfalt boleh
menambah baik secara
signifikan faktor rut dan modulus ricih kompleks asfalt serta mengurangkan
sudut fasa dan kadar pertumbuhan kelikatan asfalt berubah daripada
laju kepada perlahan. Pendarfluor dan keputusan pengimejan
3Dsurface menunjukkan apabila resin epoksi dan agen
pengawetan diagihkan secara seragam dan membentuk struktur mikroberflokulasi, resin epoksi boleh membengkak sepenuhnya
dalam asfalt dan keamatan kependarfluoran adalah seragam. Analisis statistik
zarah menunjukkan
pembaikan dalam prestasi
suhu tinggi asfalt oleh resin epoksi dan agen pengawetan hasil
daripada taburan kawasan zarah di atas 26.7346 μm2. Prestasi suhu tinggi asfalt epoksi adalah optimum
apabila kandungan
resin epoksi dan agen pengawetan adalah 6%.
Kata kunci: 3Dsurface; mikromorfologi; pendarfluor; zarah statistik
RUJUKAN
Ahmedzade, P. 2013. The investigation and comparison effects of SBS and
SBS with new reactive terpolymer on the rheological properties of
asphalt. Construction and Building Materials 38:
285-291.
Cabanelas, J.C., Serrano, B., Gonzalez, M.G. & Baselga, J. 2005. Confocal
microscopy study of phase morphology evolution in epoxy/polysiloxane
thermosets. Polymer 46(17):
6633-6639.
Chen, X., Li, C., Jiang, Y., Zhang, W. & Xu, G. 2019. Comparisons with
high viscosity additive effects on base and modified asphalt. Petroleum Science and Technology 37(11):
1331-1337.
Chen, X.H., Huang, W. & Qian, Z.D. 2007. Interfacial behaviors of epoxy
asphalt surfacing on steel decks. Journal
of Southeast University 23(4): 594-598.
Cong, P., Luo, W., Xu, P. & Zhang, Y. 2019. Chemical and physical properties
of hot mixing epoxy asphalt binders. Construction and Building Materials 198: 1-9.
Cong, P., Tian, Y., Liu, N. & Xu, P. 2016. Investigation of epoxy-resin-modified
asphalt binder. Journal of
Applied Polymer Science 133(21). Doi: 10.1002/app.4340.
Cong, P., Chen, S. & Yu, J. 2011a. Investigation
of the properties of epoxy resin-modified asphalt mixtures for application
to orthotropic bridge decks. Journal
of Applied Polymer Science 121(4): 2310-2316.
Cong, P., Chen, S |